The Structure of Uranium(III) Trichloride by Neutron-Diffraction Profile Analysis

By J.C.Taylor and P.W.Wilson
Chemical Technology Division, Australian Atomic Energy Commission, Research Establishment, Lucas Heights, Private Mail Bag, Sutherland, New South Wales, 2232, Australia

(Received 21 May 1974; accepted 23 July 1974)

Abstract

A precise neutron-diffraction powder study of UCl_{3} was carried out which confirmed the structure proposed in an early X-ray powder study of Zachariasen. UCl_{3} is hexagonal with space group $P 6_{3} / m$ ($C_{6 h}^{2}$) and $a=7.443, c=4.321 \AA$, and $Z=2$. A least-squares analysis with the profile-fitting technique gave $R=\sum_{i}\left(\mid I_{o l}-I_{c_{i} i}\right) / \sum I_{o i}=0.077$, where I_{i} is a background-corrected intensity at a point i on the pattern. The uranium atoms are in positions $2(d), \pm\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{4}\right)$ and the six chlorine atoms in $6(h), \pm\left(x, y, \frac{1}{4}\right.$; $\bar{y}, x-y, \frac{1}{4} ; y-x, \bar{x}, \frac{1}{4}$). Measured parameters were $x_{\mathrm{Cl}}=0.3009$ (4) and $y_{\mathrm{Cl}}=0.3858$ (4). The uranium coordination polyhedron is a tricapped trigonal prism with $\mathrm{U}-\mathrm{Cl}(6 \times)=2.931$ (2) \AA and $\mathrm{U}-\mathrm{Cl}(3 \times)=$ 2.938 (3) \AA.

Introduction

The structures of UCl_{3} and 17 other isostructural compounds have been briefly described by Zachariasen (1948). The structure proposed was hexagonal, with space group $P 6_{3} / m\left(C_{6 h}^{2}\right)$, and unit-cell dimensions $a=$ 7.443 and $c=4 \cdot 321 \AA$. The atoms were placed as follows: 2 U in $2(d), \pm\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{4}\right)$ and 6 Cl in $6(h), \pm\left(x, y, \frac{1}{4}\right.$; $\left.\bar{y}, x-y, \frac{1}{4} ; y-x, \bar{x}, \frac{1}{4}\right)$ with $x=0.292$ and $y=0.375$. This arrangement, shown in Fig. 1, gave nine chlorine atoms around each uranium atom, the $\mathrm{U}-\mathrm{Cl}$ distances being $2.96 \AA$. The final results only were given with no description of the X-ray analysis. Since that time, no further structural work appears to have been done on UCl_{3}. In X-ray diffraction, the uranium scattering greatly predominates, making precise location of the lighter atoms difficult. However, using neutron diffraction, chlorine atoms can be located as accurately as uranium atoms. It was therefore considered worth while to re-examine the structure of this important compound by neutron diffraction.

Preparation and experimental

Several methods for the preparation of UCl_{3} were tried but the most successful method was the reduction of UCl_{4} by Zn as described by Brown \& Edwards (1972). Approximately 20 g of UCl_{4} were used in the preparation. The reduction was carried out at 870 K for 24 h . Since UCl_{3} is hygroscopic it was only handled in a dry-box. The UCl_{3} sample was placed in a 1 cm diameter vanadium can and a neutron-diffraction powder pattern was collected on the AAEC research reactor HIFAR, with the elastic diffraction technique (Caglioti, 1970) to $\sin \theta / \lambda=0.366$, with $\lambda=1.083 \AA$. The lines were all accounted for on the basis of the Za chariasen cell and there was no evidence for any large amount of impurity in the pattern, which is shown in Fig. 2. The unit-cell dimensions, as determined by a least-squares analysis of the 2θ positions
on the neutron pattern, were $a=7.469$ (4) and $c=$ $4 \cdot 334$ (2) \AA, slightly higher than the Zachariasen (1948) values which are given, along with the other crystal data, in Table 1. A small amount of UO_{2} was present; seven points between 32° and 33° (220 reflexion of UO_{2}) were omitted from the profile refinement below.

Table 1. Some crystal data for uranium trichloride*

$$
\begin{aligned}
& \text { Hexagonal, space group } P 6_{3} / m\left(C_{6 h}^{2}\right), a=7 \cdot 443, \\
& c=4 \cdot 321 \AA, V=207 \cdot 3 \AA^{3}, Z=2, \\
& D_{x}=5 \cdot 52 \mathrm{~g} \mathrm{~cm} \\
& \text { atom } 34 \cdot 5 \mathrm{~cm}^{3}, \text { M.W. } 344 \cdot 39, \text { volume per } \mathrm{Cl} \\
& \quad * \text { Zachariasen (1948). }
\end{aligned}
$$

Analysis of the data

The neutron powder pattern of UCl_{3} was analysed by the profile-fitting method of Rietveld (1967). The neutron scattering lengths used were $b_{\mathrm{U}}=8.5 \mathrm{fm}$ and $b_{\mathrm{Cl}}=9.6 \mathrm{fm}$ (Neutron Diffraction Commission, 1972). The starting parameters were those of Zachariasen (1948), and an overall isotropic Debye-Waller factor was assumed. The refinement converged to a value of $R=\sum_{i}\left(\left|I_{o i}-I_{c i}\right|\right) / I_{o i}$ of 0.077 where I_{i} is a backgroundcorrected intensity at a point i on the pattern, and a value of $\chi=\left\{\sum w\left(I_{o}-I_{c}\right)^{2} /(\mathrm{NO}-\mathrm{NV})\right\}^{1 / 2}$ of $1 \cdot 34$. The overall B factor was $1 \cdot 00$ (6) \AA^{2}. The observed and calculated neutron powder pattern profiles in Fig. 2 show

Table 2. Final neutron diffraction parameters in UCl_{3}, compared with the estimated parameters of Zachariasen $(1948)\left(\times 10^{4}\right)$

	x	y	z
U	6667	3333	2500
Cl	$3009(4)$	$3858(4)$	2500^{*}
	2920	3750	$2500 \dagger$
			Present
		Zachariasen (1948).	

excellent agreement between theory and experiment The final parameters are given in Table 2.

Discussion

The present neutron-diffraction analysis of UCl_{3} has confirmed the structure proposed by Zachariasen (1948) and also given precise parameters. The precision in the x and y coordinates of the chlorine atom in Table 2 is $\pm 0.003 \AA$, and the bond lengths and angles in Table 3 have computed errors of $\pm 0.1 \%$. The x and y parameters of Cl are 0.07 and $0.08 \AA$ distant from those estimated by Zachariasen (1948).
UCl_{3} is the standard example of the nine-coordinate symmetrically tricapped trigonal prism configuration.

This polyhedron is shown in Fig. 3. The three capping atoms lie outward from uranium through the centres of the three rectangular prism faces The $\mathrm{U}-\mathrm{Cl}$ distance to the three central capping atoms, 2.938 (3) \AA, is nearly identical with the $\mathrm{U}-\mathrm{Cl}$ distance to the six atoms at the vertices of the trigonal prism, 2.931 (2) \AA. These $\mathrm{U}-\mathrm{Cl}$ distances are close to the original estimate of Zachariasen (1948) $\mathrm{U}-\mathrm{Cl}(9 \times)=2.96 \AA$. Around the edges of the polyhedron, the $\mathrm{Cl}-\mathrm{Cl}$ approaches are 3.431 (3) \AA about the prism end-faces, 4.321 (3) \AA along the prism axial length and the capping atoms are 5.088 (5) \AA apart. The 3.431 (3) \AA contact is less than the ionic diameter of the chloride ion, $3 \cdot 64 \AA$.

The crystal structure is illustrated in Fig. 1. The atoms lie at $z=\frac{1}{4}$ and $z=\frac{3}{4}$. Chains of polyhedra joined

Table 3. Interatomic distances and angles in UCl_{3} by neutron diffraction, in \AA and degrees, calculated with the Zachariasen (1948) cell dimensions (see also Figs. 3 and 4)

In UCl_{9} polyhedron	
$\mathrm{U}-\mathrm{Cl}(3 \times)$	$2.938(3)$
$\mathrm{U}-\mathrm{Cl}(6 \times)$	$2.931(2)$
$\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$	$70.59(7)$
$\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$	$71.63(6)$
$\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$	122°
$\mathrm{Cl}-\mathrm{Cl}$	$3.431(4)$
$\mathrm{Cl}-\mathrm{Cl}$	$5.088(5)$
$\mathrm{Cl}-\mathrm{Cl}$	$3.391(3)$

(trigonal prism face edge) (between capping atoms) (face atom-cap atom)
$\mathrm{Cl}\left[\mathrm{U}_{3} \mathrm{Cl}_{10}\right]$ polyhedron
$\mathrm{Cl}-\mathrm{Cl}(4 \times)$ chlorine to square base atom 3.391 (3)
$\mathrm{Cl}-\mathrm{Cl}(2 \times)$ along c axis 4.321 (3)
$\mathrm{Cl}-\mathrm{U} \quad 2.938$ (3)
$\mathrm{Cl}-\mathrm{U}(2 \times) \quad 2.931$ (2)
$\mathrm{Cl}-\mathrm{Cl}(2 \times) \quad 3.362(4)$
$\mathrm{Cl}-\mathrm{Cl}(2 \times) \quad 3.431$ (4)
U-U distances 4.811 (2) related by centre of symmetry 4.321 (3) c-repeat

Fig. 1. The crystal structure of uranium trichloride as seen along [001]. The radii of the circles correspond to ionic radii. The dark circles are uranium atoms at $z=0.75$ and the circles filled with dots uranium atoms at $z=0 \cdot 25$. The dashed circles are chlorine atoms at $z=0.25$ and full-line circles chlorine atoms at $z=0.75$. One uranium coordination polyhedron is outlined.

Fig. 2. Observed and calculated neutron-diffraction pattern profiles for uranium trichloride.

Fig. 3. The nine-coordinate symmetrically tricapped trigonal prism configuration of chlorine atoms around the uranium atom in UCl_{3}. Atom sizes not to scale.

Fig. 4. The chlorine atom environment in uranium trichloride.
on the prism basal faces lie parallel to [001] and along the $\overline{6}$ axes. The chains are not isolated, each being linked symmetrically to three others. The capping atoms of one chain become the basal atoms of an adjacent chain and adjacent chains are displaced by the distance $c / 2$. There are large cylindrical voids in the structure about the c axes; these holes have a diameter of $1.6 \AA$ (assuming a Cl ${ }^{-}$diameter of $3.64 \AA$). There
are similar channels between chlorine atoms in UCl_{4} (Taylor \& Wilson, 1973).

The coordination of chlorine in this structure is of interest and is shown in Fig. 4. Each chlorine atom is surrounded by ten chlorine and three uranium atoms. The chlorine coordination polyhedron has a square face of four chlorine atoms 3.391 (3) \AA away from the central chlorine atom. In a plane nearly parallel to the square face and through the central atom are two chlorine atoms above and below the central atom and distant 4.321 (3) \AA from it, and one uranium atom, $2.938 \AA$ away from the central chlorine. In a plane parallel to the square base, but on the other side of the central chlorine atom lies a pentagon of three chlorine and two uranium atoms, and through the centre of this pentagon lies the final chlorine atom, $3 \cdot 431 \AA$ away from the central chlorine atom. The chlorine polyhedron is thus very asymmetric, but it is very similar to the square-base chlorine coordination polyhedra described for ThCl_{4} (Mucker, Smith, Johnson \& Elson, 1969), and for the isostructural compound UCl_{4} (Taylor \& Wilson, 1973). These have ten Cl and two Th (or U) atoms about the central Cl. In UCl_{5} (Smith, Johnson \& Elson, 1967) the coordination of chlorine is $13(12 \mathrm{Cl}$ and one U$)$. The 12 chlorine neighbours in UCl_{5} lie at the vertices of a cuboctahedron.

The effective ionic radii for uranium (Shannon \& Prewitt, 1969) decreases as the valence state increases. Thus, there should be a tendency for the coordination number of uranium to decrease with increasing valence for a given anion. This is observed; the coordination numbers of uranium in $\mathrm{UCl}_{3}, \mathrm{UCl}_{4}$ (Taylor \& Wilson, 1973), UCl_{5} (Smith, Johnson \& Elson, 1967) and UCl_{6} (Taylor \& Wilson, 1974) are 9, 8, 6 and 6. The U-Cl bond lengths also decrease on going through the same series.

References

Brown, D. \& Edwards, J. (1972). J. Chem. Soc. Dalton, pp. 1757-1762.
Caglioti, G. (1970). In Thermal Neutron Diffraction, edited by B. T. M. Willis, chap. 2. Oxford Univ. Press.
Mucker, K., Smith, G. S., Johnson, Q. \& Elson, R. E. (1969). Acta Cryst.B25, 2362-2365.

Neutron Diffraction Commission (1972). Acta Cryst. A28, 357-358.
Rietveld, H. M. (1967). Acta Cryst. 22, 151-152.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Smith, G. S., Johnson, Q. \& Elson, R. E. (1967). Acta Cryst. 22, 300-303.
Taylor, J. C. \& Wilson, P. W. (1973). Acta Cryst. B29, 1942-1944.
Taylor, J. C. \& Wilson, P. W. (1974). Acta Cryst. B30, 1481-1484.
Zachariasen, W. H. (1948). Acta Cryst. 1, 265-268.

